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NUMERICAL COMPUTATIONS CONCERNING THE ERH 

ROBERT RUMELY 

In memory of D. H. Lehmer 

ABSTRACT. This paper describes a computation which established the ERH to 
height 10000 for all primitive Dirichlet L-series with conductor Q < 13, and 
to height 2500 for all Q < 72, all composite Q < 112, and other moduli. 
The computations were based on Euler-Maclaurin summation. Care was taken 
to obtain mathematically rigorous results: the zeros were first located within 
10-12, then rigorously separated using an interval arithmetic package. A gen- 
eralized Turing Criterion was used to show there were no zeros off the critical 
line. Statistics about the spacings between zeros were compiled to test the Pair 
Correlation Conjecture and GUE hypothesis. 

0. INTRODUCTION 

D. H. Lehmer was one of the pioneers in numerical computations concerning 
the Riemann zeta function: he showed [9], [10] that the first 25000 zeros of the 
zeta function were on the critical line. Since then, the Riemann Hypothesis has 
been checked to successively larger heights, the current record being t = 5 . 108 
(van de Lune, te Riele, and Winter [11]); it has also been checked for long 
intervals at substantially greater heights by Odlyzko [16]. 

However, comparatively little energy has been spent on Dirichlet L-series 
and the Extended Riemann Hypothesis. This paper reports on a computation 
which established the ERH to height t = 10000 for all primitive Dirichlet 
L-series with conductor Q < 13, and to height t = 2500 for the following Q: 

- all Q < 72, all composite Q < 112; 
- all Q with q(Q) < 60 (q being Euler's function); 
-all Q of the form M N with M, N < 13; 
-all Q dividing 432 = 24 * 33, 360 = 23 . 32.5, 420 = 22.3 .5. 7; 
- prime powers Q through 28, 35, 53, 72, 112, 132; 
- primes Q for which Q( - Q) has class number 1. 

In addition to checking the ERH, the programs determined the zeros to within 
10-12 and compiled statistics about them to test Montgomery's pair correlation 
conjecture and the GUE hypothesis for L-series. These moduli and heights 
were chosen to explore behavior depending on the conductor, order, and sign 
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of the characters; and also to (hopefully) be useful for applications requiring 
numerical approximations to the ERH. 

The initial study of zeros of Dirichlet L-series was that of Davies and Hasel- 
grove [3]. They computed the zeros to height t = 2000/q(Q) for real primitive 
characters with conductor Q E {3, 4, 5, 7, 8, 11, 12, 13, 15, 24}, and to 
various heights t < 105 for real and complex primitive characters with con- 
ductor Q E {5, 7, 11, 19, 43, 67, 163}. Later Spira [24] computed the zeros 
to height t = 25 for all real and complex primitive characters with Q < 24. 
More recently, Hejhal computed zeros at considerable heights for certain real 
primitive characters [5]. These investigations all supported the ERH. 

The possibility for applications of such results has long been known: for ex- 
ample, McCurley [12], [13] used the Davies-Haselgrove zerofree region to prove 
a prime number theorem of Rosser-Schoenfeld type for the arithmetic progres- 
sions x- 1 2 mod (3). Recently, Ramare [20], [21] extended McCurley's 
results to all the moduli Q listed above, using the zerofree region described 
in this article. In [20] he applied this to reduce the bound on Schnirelman's 
constant from 19 to 13; very recently [22], he has further improved the bound 
to 7: that is, every integer n > 2 is a sum of at most 7 primes, and every even 
integer n > 2 is a sum of at most 6 primes. 

In this investigation, great care was taken to obtain results which are mathe- 
matically rigorous, in so far as that can be done in a computer-assisted proof. 
The project had three phases. In phase I, the zeros on the line were located as 
accurately as possible. In phase II, the zeros from phase I were input to a pro- 
gram which recomputed function values at points between the zeros, using an 
interval arithmetic package to bound roundoff error, thus rigorously separating 
the zeros and providing a lower bound for the number of zeros on the line. In 
phase III, a generalized Turing criterion was used to show that there were no 
zeros off the line to a given height, and that all the zeros on the line had been 
located. 

Let x be a primitive Dirichlet character with conductor Q. Unless otherwise 
specified, we will assume throughout the paper that Q > 1. Let L(s, X) be the 
Dirichlet L-series attached to X; put 

4(S, x) = (Q/17)S/2 . F((s + 3)/2) * L(s, x), 

where 3 = (1 - x(-1))/2. Then (see, e.g., [7]) 4(s, X) is entire and satisfies 
the functional equation 

4(s, X) = W.X * (1 - ,s), 

with W. = i-T(x)Q-'12 and T(x) = Z, X(a)ea 2,,1Q. The root number W. 
has absolute value 1. If we write s = ?+it and Wx= e'0x, it follows from the 
functional equation that if 

O(t, X) = (t/2) ln(Q/2z) + Im(ln(F((s + 3)/2))) - Hx/2, 

then 
Z(t, X) =e'0(' X) * L(s, X) 

is real-valued and has the same absolute value as L(s, X). Hence, determining 
the zeros of L(s, X) on the critical line reduces to a real-variable problem. 

In ?? 1, 2, and 3 below we outline the three phases of the computation and 
describe the theory behind them. In ?4 we examine the conclusions that can be 
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drawn. In ?5, which appears in the Supplement section at the end of this issue, 
we collect various tables and graphs. 

The algorithms used by the program were based on Euler-Maclaurin summa- 
tion. This was much simpler to implement than the Riemann-Siegel formula 
and made rigorous error bounds easy to obtain, though it limited the heights to 
which the computations could be carried. 

The most interesting conclusion suggested by the data is that statistics about 
the zeros depend primarily on the set of primes dividing the conductor, and not 
on the conductor itself or the order or sign of the character. An example is given 
by Montgomery's pair correlation conjecture [15]. For a primitive L(s, X) with 
conductor Q, Montgomery's conjecture predicts that (assuming the ERH), as 
I 

+ iy, runs over the zeros of L(s, X) and y, -* oc, the average number of 
zeros 1 + iy with y in the interval (y,n, y, + 27ZA/ ln(Qt/27Z)) should be 

(7si )2) d7xX N(A, x)=1 I - sin>. 
J: ( ~(7rX)2) 

We will call the integrand Montgomery's pair correlation function. 
The data suggests that for each Q there is an "empirical" pair correlation 

function (possibly depending on the height), which is the same for all primitive 
L(s, X) with conductor Q, and is virtually the same for Q with the same 
underlying prime divisors. In the range of t studied, this function varies from 
modulus to modulus, and it agrees much better with Montgomery's function for 
prime moduli than for composite ones. For moduli divisible by 3, 4 and 12 the 
empirical pair correlation functions show large oscillations. Presumably they 
converge slowly to Montgomery's pair correlation function as t increases, but 
further work would be needed to substantiate this. Odlyzko has proposed an 
explanation for these phenomena based on the Riemann-Siegel formula, which 
will be discussed in ?4. 

The computations were carried out on Zenith PC's in the Math 116 testing 
lab at the University of Georgia, and on the personal computers of several UGA 
faculty members. These machines were equipped with 8087 Math coprocessors, 
which were essential to the computation. In all, the computations represent 
more than a year's running time on 25 machines, with a combined speed of 
approximately 1 MFlop. 

1. COMPUTING THE ZEROS 

Accurately locating the zeros of the L(s, X) required many function eval- 
uations. To compute the L(s, X) efficiently, the program used polynomial 
approximations to the Taylor expansions 

00 

L(s, X) = Z an(so, X)(s-so) 
n=O 

at points s0 on the critical line. It proved convenient to move up the line by 
steps of , taking so= - + 2i + i, ... and keeping the expansions at 
two successive points in memory at a given time. Enough terms of the Taylor 
series were kept that in the disc D(so, ), the error due to the omitted terms 
was less than 10-20 (machine precision); in practice, this meant between 20 
and 35 terms. 
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A. Bounds for the number of Taylor coefficients. To bound the a, (so, x), and 
thus to determine the number of terms needed, one can use Cauchy's estimate 

I 27z 

Ian(So,X)1 ' 2X) R jI IL(so + Re0, X)IdO. 

As R varies, there is a tradeoff between the growth of IL(s, x)I in the nu- 
merator and Rn in the denominator; reasonable estimates were obtained by 
taking R = 3 and using the following bounds for IL(s, x)I on the strip -2I < 
Re(s) < 31. 

Lemma 1. If x is a primitive Dirichlet character with conductor Q > 1, then, 
writing a = Re(s) one has: 

for 2? < a < 3, IL(s, x)I < 1.3415; 

for 1? < a < 2, IL(s, x)I < 2.6124; 

for - 4 < a < 1 IL(s, x)I < 2.6124 * [Q/(2iZ)]3/4-o/2 . - 2s 1 1; 

for - 12 < ai < -1 IL(s, x)I < 1.7416. [Q/(27z)] 1>2-a *ls(s + 2)1; 

for - 2? < a < -12, IL(s, x)I < 1.1268 . [Q/(27z)]"1/2-, * s(s + 1)(s + 3)1. 
Proof. Trivially, IL(s, x)I < 4(a) for any a > 1, and computations show 

C( 12)<2.6124, C(2!) < 1.3415. Since 4(a) is decreasing for a > 1 , the first 
two assertions hold. Using the functional equations of L(s, X) and F(s), one 
finds that when M is a positive integer, 

M-1 

IL( -M + it, x)I = [Q/(27r)]M * J 1 2+ k + itl * IL(' + M + it, x)L. 
k=O 

To obtain the bound on the strip - < < a < 1 < , apply the Phragmen-Lindelof 
theorem to 

G(s) = (s - 2 )-1 * [Q/(27r)]s12-314 * L(s, X). 

By the formulas above, IG(s)I < C( 11) on the lines a = - =2, - 2 Trivially, 

G(s) is holomorphic and has polynomial growth in the strip, so IG(s)I < C(1 2) 

throughout it. When - 1 < a < - , apply the Phragmen-Lindelof theorem to 

G(s) = [s(s + 2)]-l * [Q/(271)]s-1/2 * L(s, X) 

on the line ac = -Ii, IG(s)I < C(2I) < 1.3415; on the line a = - I G(s)I < 

2* . ( 12) < 1 .7416. When -21 < a < -I 1 apply Phragmen-Lindelof to 

G(s) = [s(s + 1)(s + 3)]-l [Q/(271)]s-l/2 * L(s, X) 

on the line a = -21 , IG(s)I < C(3 2) < 1 1268; on the line a=-1, I G(s)? < 
2 -. (2I) < .8944. ? 

Lemma 2. Writing so = 2 + it, put i = [Q/(27z)] * [Itl + 4]. Then 

Ian(so, x)I < 3-n . P(i), where P(i) = 0.303,3 + 0.22 1,2 + 0.605. + 0.687. 

Proof. Applying the Cauchy estimate, it is enough to show that 
2 27L 

(27r)- / Pso + 3eio, X) I dO 
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is bounded by P(g). We use the estimates for IL(s, x)I in Lemma 1. One 
easily sees that on the arcs of aD(so, 3) in -22 < a < -12 X Is(s+ l)(s+ 3)1 < 
(itl + 4)3; on the arcs in -1 < a < - Is(s + 2)1 < (Itl + 4)2; and on the arcs 
in -2 < Ca < 1,Is - 211 < 1.0607 * (Itl + 4). Using these bounds, together 2 - - 2 js 2 
with the lengths of the arcs involved, one finds the stated formula. 0 

This immediately yields 

Proposition 1. Suppose Re(so) = 4. In order for N an(so, x)(s - so)n to 
approximate L(s, X) within 10-20 on D(so, 4), it suffices that N be large 
enough that P(A)/(l * 12N) < 10-20. 

Thus, if Q = 13 and t = 10000, then N = 31 will do; if Q = 432 and 
t = 2500, then N = 33 suffices. The programs determined the number of 
coefficients needed as it ran. 

B. Computing the Taylor coefficients. To compute the an (so, x), the program 
used the decomposition 

L(s,%X)= E X(a) - (s; a, Q), 
(a, Q)=1 
1 <a<Q 

where for Re(s) > 1 
0.01 

C(s; a, Q)= E (a + mQ)s 

Thus, 
an(so, X) = (Il/n) * I:x(a) - (d1ds)nC(So; a, Q). 

a 

Each partial zeta function C(s; a, Q) has an analytic continuation to C \ { 1} 
with a simple pole of residue 1/Q at s = 1 . When Re(s) > 1, 

(I)n. "m=O (a + mQ) 

To evaluate (d/ds)nC(s; a, Q) for Re(s) < 1, the program used Euler- 
Maclaurin summation (see [4, ?6.2)]); if we write 

fn(s; x, a, Q) = ln(a +X) 
(a + xQ)s 

f (k)(S; X, aQ)=(/Xk (ln(a + XQ)n n 
x, a, Q) 

=(d/dx) (n(a ? 
xQ)s 

then for Re(s) > 1 - 2L 

(-)n -(d1ds)n,(S ; a, Q) 
M-1 

fn(s; m, a, Q) + 4fn(s; M, a, Q) + In(s; M, a, Q) 
(1) m=1 

L 

- 5(B2v /(2v)!) . f (2vl)(S; M, a, Q). 
v=1 
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Here, I (s; M, a, Q) is the analytic continuation of the integral 
{00 

Jfn(s; x, a, Q)dx, 

which converges for Re(s) > 1 , and the B2V are Bernoulli numbers (B2 = 1/6, 
B4 = -1/30, B6 = 1/42,...). The error in this approximation is 

(2) R2L = R2L(S; n, M, a, Q) = (21)! J B2L(X)f2L)(s; x, a, Q)dx, 

where B2L(X) is the periodified Bernoulli polynomial (see [4, p. 101]) satisfying 
IB2L(X)l < IB2LI for all x. We will see below that R2L can be made negligibly 
small if M and L are sufficiently large. 

In formula (1), In(s; M, a, Q) can be evaluated using a recurrence: 

Io(s; M, a, Q) = Q( I- 1)(a?MQ)s 

In(s; M, a, Q) = [ln(a + MQ)]n * Io(s; M, a, Q) 
+ [nl(s -1)]*- In- I(s; M, a, Q). 

Likewise, the derivatives f (k)(S; x, a, Q) can be evaluated using the recur- 
rence 

fnk x, a, Q) = n nQ*f -I(s? 1; x, a, Q) 
-s . Q . f (k1i) (5 + 1; x, a, Q). 

To estimate R2L, first note that for any n, if Re(s) = a, then If n?)(s; x, a, Q) I 
= x)(; X, a, Q). Also, if n1 < n2 and a+xQ > 1, then If n?)(s; x, a, Q)I < 
nf n?)(s; x, a, Q) I. Using the recurrence above, one finds by induction that for 

> 0 

n (s;x, a, Q)j 

< (151+ n)(Is + 11 + n) (Is +k - 11 + n)*. Qk * f (0)(cJ + k; x, a,I Q) 
Furthermore, for any T > 1 , writing B = a + MQ, we get 

f()T;x, a, Q) dx = [ln(B)] - Z(_ 1), n(n -1).. (n- j + 1) 
JM Q(T- I)BT- [(T -) ln(B)]J j=O 

If IT - 1 I ln(B) > 2n, then the sum on the right has absolute value at most 2. 
Inserting these estimates in the expression for R2L, one finds 

JR2L(s; n, M, a, Q)I 
rOO 

? IB2L /(2L)!J If 2L)(s; x, a, Q) dx 

< (Isl + n) . (Is + 2L - 11 + n) . Q2L. 2IJ (0)( + 2L; x a Q) dx 
(2L)! JM 

< 2[ln(a + MQ)]n(M + a/Q)-0' IB2LI (Isl + n) (Is + 2L - 11 + n) 

Qa(a + 2L - 1) (2L)! (M + a/Q)2L 

provided (a + 2L - 1) * ln(a + MQ) > 2n. This side condition is easily met 
in practice. The program used a - 2 and M . 1.3(IsI + 40); since in any 
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case Q > 3, it was enough to have L > 9 to satisfy the side condition for all 
n < 35. 

The discussion above leads immediately to 

Proposition 2. Suppose Re(so) = 2 . To compute (d/ds)nC(so; a, Q) accurately 
enough that for s E D(so, 4) each term an(so, x) . (s - sO)n contributes an error 
at most 10-20 to the sum EN an(so, x)(s - so)n , it is enough to choose M 
and L so that (2L - 2) * ln(a + MQ) > 2N, and so that for 0 < n < N, 

1 IB2LI (IsI + n) (Is + 2L - 11 + n) 
(2L - 2) (2L)! (M + a/Q)2L 

< 10-20.Q112.4n.n! 
-2 2 r (Q) - [ln(a + MQ)]n * (M + a/Q)1/2 

As noted, the program took M - 1.3(IsI+40). Since IB2LI/(2L)! - 2/(2 2L 
as soon as Isl is even moderately large, the left side in the estimate above is 
at most 1/(8.16)2L. Thus the condition is easy to satisfy. For example, if 
N= 32, Q= 100, Isl = 2500, then L = 12 will suffice. 

C. Generating the characters. To generate the primitive characters with con- 
ductor Q, the program used the following procedure. Let the factorization of 
Q into prime powers be Q = p nl .p nr . Via the Chinese remainder theorem, 
there is a canonical isomorphism 

r 

(Z/QZ)x f(2/pnlL,)X 

i=l1 

Furthermore, for each pi > 2, there is a canonical isomorphism 

(Z/pn,Z)x (Z/p,Z)x x (I + p,)/(l +PniZ) 

a (mod pn') F-, (a (mod pi), Teichp (a<) *a (mod pn7)) 

where 
Teichp, (a) = ar"' (mod pn') 

is the "Teichmiiller representative" of a (mod pn'). When pi = 2, there are 
no primitive characters (mod Q) unless ni > 2, and in that case there is a 
corresponding isomorphism 

(l2nl2) x {? l I} x (1 + 42)/(l + 2n'2). 

Further, the p-adic logarithm maps, given by logp( 1 + Z) = EZl (-1 )n+l zn/n 
for z E pZp (resp. z E 422, if p = 2), induce canonical isomorphisms 

(I +PiE)/(1 +Pn,Z)- (Z/pn1 ZE) (if Pi > 2, ni > 1)i 

(1 + 42)/(l + 2n'2) (Z/2nh-22) (if p, = 2, ni > 2). 

For pi > 2, the groups (Z/pi2) X are cyclic, and though they do not have 
"arithmetically canonical" generators, each has a "computationally canonical" 
generator, namely the least positive primitive root gi. The discrete logarithm, 
relative to gi, gives an isomorphism (Z/pi2)X 2/(pi - 1)Z. When pi = 2, 
then (Z/42) x = {i ?}I -2/22. 
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By means of these isomorphisms, each a E (Z/Q2) X encodes a vector A(a) 
in an appropriate product of the additive groups Z/(pi- 1)2, Z/p7''2, 2/22, 

2/2n,-22. For notational convenience, write this group as HIRI (Z/mjZ), and 

let the jth coordinate of A(a) be Aj(a). We identify elements of Z/mjZ with 
their representatives in Z in the range 0 < x < mj . 

Each b E (Z/Q2)X defines a character Xb: (Z/Q2)X `? Cx via 

Xb (a) = exp (27ri R Aj (a) * Aj(b)/mi) 

The various characters Xb are distinct. For a given b, the character Xb iS 
primitive if and only if for each prime pi dividing Q: 

if pilIQ (resp. 411Q if pi = 2), then for the index j such 
that Z/mjZ corresponds to (Z/piZ)X (resp. {+I} if pi = 2), 

Aj(b) $7 0; 
if Pn7 'HQ with ni > 1 (resp. ni > 2 if pi = 2), then for the 
index j such that Z/mjZ corresponds to (1+ p12)/(1 + pni2) 
(resp. (1 + 42)/(l + 2nl2) if pi = 2), Aj(b) is coprime to Pi. 

Let A(Q) denote the number of primitive characters (mod Q). By listing, 
in increasing order, the numbers b1, ... , b(Q) (1 < bK < Q) which encode 
primitive characters, the program assigned an "identification number" K to 
each primitive character in such a way that K " XbK . These numbers K were 
used to identify the L-series in all output from the program. 

It should be noted that this numbering scheme differs from that used by 
Davies-Haselgrove [3] and Spira [24]. The correspondence between the two 
numberings can easily be found on a case-by-case basis, but is not given by a 
simple formula. 

D. Search method. Input to the program was the modulus Q and (option- 
ally) the initial height t. In a preprocessing phase, the program generated the 
primitive characters x with conductor Q and calculated the root number Wx 
and other data about the L-series it needed. It kept a "restart file" so that if 
the search for zeros was interrupted, it could begin again where it left off. If 
no restart file was present, and no height was specified, the search began at 
t = -15.0. 

In searching for the zeros, the program computed Taylor series at points 
SO = 2 + it separated vertically by steps of size 1/2. At a given so, it first 
computed the Taylor coefficients of the C(s; a, Q) for all a, 1 < a < Q, with 
(a, Q) = 1; it then computed the Taylor coefficients of the L(s, X) for primi- 
tive characters X . The L-series coefficients at two successive points were kept in 
memory at a given time. Examining each L(s, X) in turn, the program searched 
for zeros of the real-valued function Z(t, X) = eiO(' X)L(s, X), using the Van 
Wijngaarden-Dekker-Brent rootfinding algorithm [18, p. 251], and searched for 
maxima and minima of Z(t, X), using Brent's golden ratio/parabolic interpo- 
lation algorithm [18, p. 285]. The step size for these searches was about 

1 22r 
15 ln(Qt/(27r)) 
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The program used Stirling's formula for ln(F(z)) to compute the quantities 
0(t, x) to within 10-20. It was prepared to detect zeros off the line, and 
if it found successive maxima or minima of Z (t, x) with the same sign, it 
used Laguerre's method [18, p. 265] to search for the nearest root of L(s, X) . 
(In practice, this routine was frequently invoked near t = 0 and located the 
smallest trivial zero.) 

While running, the program spent almost all (98% +) of its time computing 
Taylor coefficients. At each so, after the coefficients had been calculated, it 
opened a file to record the zeros and maxima/minima that were found; when the 
searches had been completed for all L(s, x), it closed that file and rewrote the 
"restart" file, recording the search height reached for each L-series. Frequently, 
different regions for the same modulus were searched by different machines, 
and at the end, the resulting zeros/max/min files were merged together. 

2. VALIDATION OF THE ZEROS 

Though the computations carried out in Phase I were (presumably) very ac- 
curate, they were not mathematically rigorous because no attempt was made to 
bound roundoff error. In order to rigorously prove the zeros were on the line, 
a second program was used, which took as its input the list of zeros from the 
first. It ordered them by increasing ordinates, then chose validation points (" V- 
points") intermediate to the zeros and well separated from them, at which-to 
re-evaluate the Z (t, x) . By means of Euler-Maclaurin summation, it computed 
the C(s; a, Q) and L(s, x) directly (not their Taylor expansions), and then 
the Z(t, x). This program took roughly 20% as long to run as the program in 
Phase I. Its code was written using an interval arithmetic package to bound the 
accumulated roundoff error, and hence to show that Z (t, x) truly changed sign 
between each pair of V-points. 

To understand this computation, it is first necessary to recall the specifications 
of the 8087 Math Chip. In extended precision mode, the chip computes using 
an 80-bit word, with a 1-bit sign, a 15-bit exponent, and a 64-bit mantissa. It 
can carry out the basic arithmetic operations and compute the basic exponential 
and trigonometric functions to 64-bit accuracy, with the result rounded nearest, 
up (towards +oo), down (towards -oc), or truncated towards 0, as the user 
specifies. Intel states [6, p. 6-17]: 

"Internally, the 8087 employs three extra bits (guard, round, 
and sticky bits) which enable it to represent the infinitely pre- 
cise true result of a computation; these bits are not accessible to 
programmers. Whenever the destination can represent the in- 
finitely precise true result, the 8087 delivers it. Rounding occurs 
in arithmetic and store operations when the format of the desti- 
nation cannot exactly represent the infinitely precise true result. 
... Given a true result b that cannot be represented by the tar- 
get data type, the 8087 determines the two representable num- 
bers a and c that most closely bracket b in value (a < b < c) . 
The processor then rounds [as specified in the processor control 
word] ... Rounding introduces an error in a result that is less 
than one unit in the last place to which the result is rounded." 
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Assuming the 8087 performs correctly, it is possible to compute the Z(t, x), 
giving a mathematically rigorous bound on the roundoff error, and hence to 
show that it truly changes sign on a given interval. 

The author's interval arithmetic package used a representation of numbers 
consisting of a pair (a, Ca), where a is the "most likely" or "main" value of 
a real number a, and Ca is an "uncertainty radius": a is guaranteed to lie 
in the interval (a - Ca, a + Ca). Using calculus, it is easy to determine how 
uncertainties propagate through basic operations and functions. For example, 
for addition, (a, Ca) + (b, gb) = (c, gc), with c = a + b (rounded nearest), and 
Cc = Ca + Cb + Cro (rounded up), where gro is the roundoff error in c, taken to 
be the least significant bit of c. In considering these formulas, it is important 
to remember that in the chip's internal representation, a and b are definite 
numbers and that the information needed to give a + b to 64-bit accuracy is 
available. The formulas used in the package are given in Table 2.1. 

Granted the basic operations for real numbers with uncertainties, the pro- 
gram represented complex numbers as ordered pairs of such numbers, and then 
computed the necessary character, partial zeta function, F-function, and L- 
series values, keeping track of roundoff error and any truncation errors in the 
formulas for the functions. 

Over the entire calculation, the smallest value of IZ(t, x)J found at any V- 
point was approximately 4.2 x 10-6 and the largest uncertainty radius was about 
2.2 x 10-11 . Assuming the computations are correct, they give a mathematical 
proof that there are at least as many zeros on the line as claimed. It is also 
possible to analyze the code, using the methods of backwards error analysis, 
and to establish a theoretical bound for the roundoff error in Z(t, X) as given 
by the main value computation: 

[1 1Q2t312 + 194Q"/2t2 + 206Qt312 + 23Q312t + 11536Q1/2t1/2 ln(t)] u 
where u = 2-63 is the basic "unit of accuracy" of the computer. For all heights 
and moduli considered here, the bound is less than 4.3 x 10-8. This provides 
an alternative proof for the count of zeros on the line, with the advantage that 
it only relies on the accuracy of the main value computations, and not the 
uncertainty intervals. 

It is of course a question whether the computations really do provide a proof. 
They might be criticized from at least four directions: the correctness of the 
algorithms used, the correctness of their implementation, the correctness of the 
8087's internal design, and the correct functioning of the machines. The interval 
arithmetic package was subjected to a test program which repeatedly checked 
several hundred identities on random inputs of all sizes (identities like (a+b)2 = 
a2+2ab+b2, (a*b)/b = a, sqrt(x) = exp(l ln(x)), sin2(x)+cos2(x) = 1 , etc.) 
During a several-hour run, no violations of the uncertainty bounds were found. 
The output of the programs for computing L-series was subject to both internal 
and external checks. Internally, as Z(t, x) = eiO(t X)L(s, X) is provably real- 
valued but was computed using complex arithmetic, its imaginary part could 
be compared with 0. The results were consistent with expected roundoff errors, 
typically being near 10-18 for small t, and gradually increasing to 10-14 for 
t 2500. Externally, the lists of zeros produced were checked against earlier 
published lists [3, 4, 24] and found to be consistent. The 8087 chip has a 
proprietary design which cannot be examined; however it has been given IEEE 
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TABLE 2.1. Formulas used in the Interval Arithmetic package 

Operation') 3) Uncertainty radius') 2),3) 

(c, gc) = (a, Ca) + (b, Cgb) gc = Ca + Cb + Cro 

(c, gc) = (a, Ca) - (b, Cb) gc = Ca +Cgb +Cro 

(c, gc) = (a, Ca) * (b, Cb) Cc = lal C gb + lbl C ga + Ca C gb + Cro 

(c, &c) = (a, Ca)/(b, Cb) Cc = lal * bl/[lbl * (Ibl - C1)] 

(where IbI > eb) + Ca/(lbl - Cb) + Cro 

(c, gc) = sqrt(a, Ca) Cc = sqrt(a)up - sqrt(a - Ca)down + Cro 

(where a > Ca) 

(c, gc) = ln(a, Ca) Cc = Ca/(a - Ca) + Cro 

(C, 8c) = 2(a,ga) Cc = [2a + gro] * [28a- 1] + gro 

(c, gC) = cos(O , Co) gC = (I sin(0)Iup Cangle) + Cro + I(Cangle)2 

(c, gc) = sin(O, Co) Cc = (I cos(0)1up Cangle) + Cro + I(Cangle)2 

( eal[I + (lal -ga )2] + gro if lal > ga (c, gc) = arctan(a, Ca) Cc = {if la > Ca 
ga + Cro if|a|?Ca 

Notes: 
1) The number c was computed as the appropriate function of the argument(s), rounded nearest; 

,ro denotes the roundoff error in c, taken to be the value of the least significant bit of c (or the 
least representable number, if c = 0) . If an inadmissible argument for the function was included 
in the uncertainty interval the computer was instructed to abort the program and print an error 
message. 

2) In computing the uncertainty radius 8c, all rounding was carried out in such a way as to 
increase the final result. Sometimes rounding is explicitly indicated by a subscript "up" or "down". 

3) In the formulas for sin(O), cos(O), the quantity gangle denotes the sum of go and the 
error introduced by reducing 0 to lie in the interval [0, 7r/4]; the chip's actual output, given 
0 E [0, 7/4], is a pair of numbers x, y such that y/x = tan(O). These were assumed to be 
accurate within an error of 1 in the last bit, and sin(O), cos(O) were computed from them (using 
interval arithmetic) using the formulas sin(O) = y/(x2 + y2)1/2 , cos(0) = x/(x2 + y2)1/2 . 

certification. Finally, regarding the correct functioning of the machines: in 
the compilation of statistics about the zeros, the data was subjected to many 
consistency tests, and a few violations were found. All these were flagrantly 
unreasonable, and all but one could be traced to corrupted storage media. Upon 
recomputation, reasonable values were found in every case. These facts suggest 
that the computations were sound and that the data set is now clean. 

3. PROOF THAT ALL ZEROS HAD BEEN FOUND 

A third program used a generalized Turing's criterion for Dirichlet L-series 
to show that all zeros up to a chosen height were on the critical line. Given a 
segment (t1, t2) on the critical line, it combined a count of the zeros of L(s, x) 
known to be in that segment, together with the existence of sufficiently long 
intervals about t1, t2 where the zeros are fairly regularly spaced, to rigorously 
prove that all zeros with t E (t1, t2) are on the line. This program took only a 
few minutes to run, for each modulus. 

Our proof of the generalized Turing criterion is modelled on a proof by R. S. 
Lehman [8] of the Turing criterion for the Riemann Zeta-function; we will refer 
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the reader to Lehman's paper for many details. We first develop the notation 
needed to state the result. 

Suppose L(s, X) is a primitive Dirichlet L-series with conductor Q > 1 
As in the introduction, put 

O(t, X) = (t/2) ln(Q/lz) + Im(ln(F((s + 3)/2))) - Ox/2. 

If L(s, X) has no zeros at height t in the critical strip, define 

S(t, X) = (1/7r) *Im(ln(L(s, X))) 1+it 

where the logarithm is determined by analytic continuation along the horizon- 
tal line at height t. In general, define S(t, X) = limy,t- S(y, X). By the 
functional equation, for 0 < a < 1 

L(u + it, X) = 0 if and only if L(1 - a + it, X) = 0. 

Thus, S(t, X) has an integer jump at the ordinate of each zero. 
Turing's idea is very simple. Suppose t1 < t2, and that L(s, X) has no 

zeros at height t1 or t2 . Using the argument principle, and integrating 4(s, X) 
around a box with corners at 18 e it1, 1 + e + it2, -e+ it2, -e + it1, one 
finds that 

(3) N(t, ) Xt2 = (1/7r)O(t, x) Xt + S(t, X) t2 

where N(t, X)Jt2 is the number of zeros of L(s, X) in the critical strip with 
ordinates between t1 and t2. If S(t1, X) and S(t2, X) can be found, then 
N(t, X) t2 can be computed. If, further, it agrees with the number of zeros ac- 
tually found on the critical line, then the ERH holds for L(s, X) between those 
heights. Even if t1 or t2 is the ordinate of a zero, the ERH can still be estab- 
lished for t in the open interval (t1 , t2) if liMt_t+ S(t, X) and limt-t- S(t, x) 
are known. 

A value of t for which O(t, X) E 7Z2 will be called a Gram point; we will 
write gn for any solution to ft(gn, X) = n7r . Since 

Z(t, X) =-ei(t x)L(1 + it, X) 

is real-valued, S(t, X) takes an integer value at each Gram point. It is easily 
shown that O(t, X) is monotone increasing for t > 20, and it will be convenient 
to write 

T = E(t, X) = (l/7r)O(t, X), 
so that T, the coordinate on the "Gram point scale", is integer-valued at the 
points gn. If t > 20 and T = E(t, X), we will write 9(T, X) for S(t, X); 
thus, 5(T, X) takes on an integer value for each T E Z. It also follows 
immediately from (3) that, between zeros of L(s, X) on the Gram point scale, 
592(T, X) is monotone decreasing with slope -1, and at the Gram height of 
each zero, it has an integer jump equal to the number of zeros. 

The key to Turing's method is to determine 51(T, X). Set 

B(Q, t) = .2929 In (Q2) + .0198 [In (27)12 
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Theorem 1 (Generalized Turing-Lehman bound). Let Q > 1 and suppose 50 < 
tl < t2 < t3; put T, = E(tl, x), T2= E(t2 x). Then 

J7Y(T, x) d T < B(Q, t3) 

Theorem 1 will be proved later. In practice, the value of B(Q, t3) is quite 
modest; for example, if Q = 100 and t3 = 2500, then B(Q, t3) 4.824. 

To apply this, suppose we have been computing zeros of L(s, x) on the 
critical line, and that the number of zeros found to Gram height T is X( T, x). 
Put 

5(T, X) = X(T, x) - T. 

Then 5(T, x), for each T, differs from 5(T, x) by an integer. Fix some 
point To, and let 5(To, x) = 5(To, x) - A0. If, as is most likely, no zeros 
have been missed, the number A0 can quickly be found by numerically integrat- 
ing 5(T, X): suppose To = E(to, X) and T1 = E(t1, X), with 50 < to < t; 
choose t1 large enough that 

T- To > 2B = 2B(Q, tl). 

By Theorem 1, 

J(Y(T X) -Ao)dT = j 5(T, x)dT < B, 

so 

1 ~T, B 
|4A T, - ToO (T, x)d T < T T < 1/2, 

which determines the integer A0. 
Even without assuming that all zeros have been located, it is easy to find A0 

in practice. This is because SY(T, X) jumps everywhere that 5(T, X) jumps 
and possibly at other points as well, so for all T > To, we have 5(T, X) > 
5(T, X) - AO, while for all T < To, we have 5 (T, )) < (T, X) - AO/. 
Hence, if T1 < To < T2, with T1, T2 as in Theorem 1, and if B = B(Q, t3) 
as in Theorem 1, then 

( x(T, ) - Ao) d T < (T, X) dT < B, 

so 

T2 ID (JTO (5) AO0> T2 -TO 
(JT> T,X)dT-B) 

similarly, 

(6) A0 
TO- T, JT} ) 

If the inequalities (5) and (6) bracket a single integer, as is usually easy to 
achieve in practice, they determine A0. 
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Suppose now that at two points T1 < T2 we are able to determine integers 
Ai such that 5(Ti, X) = "(Ti, X) -Ai, and 1 = A2 = A. Then 5(T, X)= 
52( T, x) -A for all T E [T1, T2]. Returning to the variable t, we have found 
S(t, x) and can apply (3) to verify the ERH. 

There are many possible variations on this idea. In the program, the following 
result was used: 

Proposition 3. Suppose points 50 < to < t< < < tm are known such that the 
values Z(ti, x) are alternating in sign. Let Ti = E(ti, x), i = 0, ..., m, and 
put B =B(Q, tm). Then 

5(TO,X)?<(TMTO) [B(rnT )2+ (TM-TO)1 

a(nTm s X) > (5Tm(Tx) L-Bl T Tm].The fm as by usi) n 

by I at each of the points Tt, ...1, Tm. By hypothesis, Z(t, b) has a zero in 
each interval (tm_I, ti); hence t(T, t ) has a jump in each interval (ThI, Ti)g, 
and so x(T, i ) > ni a(T, n) for all T E [Tou, Tmf The formula arises by using 
the inequality 

w t 5 n (T, X) d T < V n (T, dT < B, 

evaluating the first integral, and solving for 9(To, x). The second formula 
is proved in a similar way, but working from the right end of [To, Tm] to the 
left. El 

In applying Proposition 3, the program took the points ti to be the succes- 
sive "V-points" intermediate to the zeros, found in Phase fo, where the sign 
of Z(t, e) had been rigorously determined. The function A(T) = ee (T, t) - 
poe(T, r) is nonincreasing and integer-valued for all T. If all the zeros had 
been found, wr(T) would be a constant b; as indicated above, it is easy to guess 
A\. To show /\(T) =_ A\, the program first took to to be the smallest V-point 
with to > 50, and examined successive V-points tl, t2, ... until it found a 
point tm such that the lower bound for H(Tm, ) given in Proposition 3 was 
strong enough to show i(Tm) < 0A + I . It then went to d o the fprogra le and 
(starting notations anew) took tm to be the last V-point, then worked its way 
down until a point to was reached such that the upper bound for ' ( To, X) was 
strong enough to show A\(To) > A - I . Although there was no guarantee that this 
procedure would succeed, it always did. Letting t# (X), t# (X) denote the two 
V-points where the bounds were established, it follows that for T = E (t , X) 
with t#(X) < t < t#(X), one has 91(T, X) = 9R(T, X) - A\. 

This would have sufficed to prove the ERH for L(s, X) on (t#(X), t#(X)), 
but it would not establish it for O < t < t# (X). To do so, the program linked 
the lists of zeros for L(s, X) and L(s, 7) and applied (3) to compute N(t, X) 
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at t = -t#(7), using that: 

0(-t, x) = - 0(t, 7) provided -0x = O- (which was checked), 

S(-t, x) = - S(t, 7) for t which are not the ordinate of a zero. 

By comparing the known count of zeros on the critical line with the bound for 
the number of zeros in the critical strip given by (3), the program established the 
ERH for L(s, X) on the interval (-t#(7), t#(X)) . The result is rigorous, since 
the only values of Z(t, X) used were ones computed using interval arithmetic. 

We now turn to the proof of Theorem 1. If T1 = E(tI, X) and T2 = E(t2, X) 
with 50 < t1 < t2, then 

rT2 rt2 

( S(T,X)dT= J S(t,X)E'(t,X)dt 

(7) l 1t 

= E'(t, X) S SI (t, X) It2 S/ (t, X) * E"(t, X) dt, 

where 
t 

SI (t, x) = S(yv X) dy. 
t2 

(We have arranged that SI (t2, X) = 0.) Using Stirling's formula, one easily 
finds that, for t > 20, E'(t, X) and E"(t, X) are both positive; hence 

T2 

T (T, X)dT < IS,(t, ,X)IE'(ti, X) 

(8) + [max ISI(t, X) l[E'(t, x) t, 

< max ISl(t,X)I E'(t2,x). 
tI <?t<t2 

Again by Stirling's formula (see [8, pp. 312-313] for a similar result) one finds 
that for t > 50 

(9) E'(t, X) = +In (Q) +E (007) < 0.15921n (N ) 

where 9(f(t)) means a function g(t) satisfying -f(t) < g(t) < f(t). Below 
we will prove 

Theorem 2. For 50 < tI < t2, 

j|2S(t, x) dt < 1.8397 + .1242 ln( 2) 

Inserting these estimates in (8), one obtains Theorem 1. 
Thus Theorem 1 is reduced to Theorem 2. Theorem 2 follows immediately 

from the following pair of results: 

Lemma 3 (Littlewood's Theorem for Dirichlet L-series). If t1, t2 are not the 
ordinates of zeros of L(s, X), then, writing s = a + it, one has 

t2 p+00+lt2 r+00+ltl 

|S(t, X) dt = (I /7r) I n IL(s, X) I du - (I1/7r) In IL(s, X)I du, 
Jt, I /~~~~2+it2 1 2+it, 

where the integrals are taken over the horizontal rays indicated. 

The proof is the same as that for C(s): see [4, pp. 190-192]. 
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Theorem 3. For t > 50, 

- 3.4507 - .241n (4) < j In lJL(s, X) I du < 2.3288 +. 1 5 n() 

For the proof of the upper bound in Theorem 3 we will need 

Lemma 4 (Rademacher). Suppose 0 < q < 0.5. Then for - q < a < 1 + t, for 
all moduli Q > 1, and for all primitive characters x with modulus Q, 

(Q l + SI 
I (+q-,g)/2 

JL(s,.X)j r? O+q 

Proof. See [19, Theorem 3, p. 199]. The author would like to thank 0. Ramar6 
for pointing out this result, which enabled him to improve the constants in 
Theorems 1, 2, and 3. 

We now prove the upper bound in Theorem 3. Taking q = 0.25, we obtain 
from Lemma 4 

(10) ln JL(s, x)l < (5/8 - c/2) * [ln(Ql 1 + sl/(27r))] + ln(C(1.25)). 

By [8, p. 305], C(1.25) < 4.596; also, for 2 < a < 1.25 and t > 50, 
ln( ( 1 + st) < .001 1 . Finally, [8, p. 305] gives the bound 

( 1 1 ) J ln I(c)I du < 1.1 84. 
1.25+it 

Combining these, we find 

+Io?+it 1.25+it ?++?1t 

ln JL(s, X) dc = d In JL(s, X)j du + In L(s, X)I du 
1/2+it 1/2+it 1.25+it 

(12) < j (.625 - 0.5c)ln (2 ) + 1.5263dui+ 1.184 

<.14071n (Q) + 2.3288 

as claimed. 
For the lower bound in Theorem 3, we begin by writing 

+00+t 
I lnJL(s, X)Idu 

1/2+it 

(13) = ?00?it L(s, X)L(s+2,X) dc 
(13) 

InI/2? L(s ? 1 )2 
d 

+?00?+t 2.5+t 

+J InJL(s, X)jdui+ lnJL(s X)Idu 
1.5+1t .5+it 

Now, for ci> 1, lnJL(s, x)l = -plnIl -X(p)p-sK Foreach p, 

-lnll X-(P)P-sl > -ln| 1 +p-p' = -lnll -p-21 + lnIl -p-fl; 
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hence ln I L(s, x)I > ln IC(2a) I - ln IC(a) I. Using these bounds in the last two 
terms and changing variables as needed, we find 

+o+it 1 r0 
J ln JL(s, x)I du > - I ln JC(u)j du - ln JC(u)j du, 

(14) 1.5+it 2 j.5 
r2.5+it 1 r5 r2.5 

J ln JL(s, x)I du > 2 j ln JC(c)j dc - j ln JC(u)j dci. 
1.5+it 2 1.5 

By [8, p. 306], 

r2.5 00 

jlnI (u)Idu < .5382, jlnIK(u)Idu < .3445, 
1.5 2.5 

(15) jlnIK(u)Idu < .0495, jlnI (u)Idu > .2274, 

r5 
jln J(u) I du > .1779 

(the last inequality follows from the previous two). On the other hand, 
f+oC+it L(s, X)L(s?+2, x)dc 

J/2+it|n L(s + 1, X)2 | 

Nli~OOJ .N+ i't L(s, X) dci-L(s + 1? X) L ) 

= lim It n |((') |d - In du|((+1)) 
N--+c n 1/2+it L(s +l,) JN+j L ( l d 

(16) 1.+i 5 L( x)+i 

= li n dcis ) u-I Ls ) d 
NI+) 1/ 2+it L(s + 1), +ix(s+1,X 

Inserting (14), (15), (16) in (13), one obtains 
+Coo+it 1.5+i't L(s, x) 

(17) lnJL(s,X)Idui> I In L( +, X) lndu-1.2183. 
J1/2+it J1/2+it L(+1,x 

Next we adduce the Weierstrass product 

(18) (Q/7r)S F r((s + 3)/2) * L(s, x) = 4(s, x) = eA+Bs * J(i - s/p)eslP 
p 

(cf. [2, p. 82]: the product is taken over the nontrivial zeros of L(s, x) and 
converges absolutely and uniformly on compact subsets of C; A and B depend 
on x). This yields 

| L(Sn X) Re(B) + In(Q/7r) + In F((s + 1 + 3)/2) 

(19) L(s? 1, () 2 F((s + 3)/2) 

However, by [2, p. 83], 

(20) Re(B) = - Re(1/p), 
p 
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where the sum converges absolutely, so the dependence of (19) on Re(B) and 
the Re(l /p) cancels out. Further, the sum 

ln l- (s+ )/p 

converges absolutely and uniformly on compact subsets of C \ {all p, p - 1 }. 
Now clearly, 

r1.5 

(21) f 2ln(Q/iz) du ln(Q=7) 
1/2 

and by using the mean value theorem for integrals, as in [8, p. 311], one obtains 

(22) t ln 
5 

4it ((s + I + S) /2) F/a= e( r ( + it/2)) (22) ilnd =IR 

for some T E [2(.5 + 3), 2(2.5 + 3)] c [.25, 1.75]. According to [8, Lemma 8, 
p. 308], if Re(z) > 0, then 

(23) F =ln(z)_ __+ E______ F(z) 2z 72 MZ2 eZ2 

Applying this with z = z + it/2, and using .25< T < 1.75, t > 50, we find 

(24) In[5+ JT((s- 1 ?3)/2) da > I ln(t/2)-.0018. 

1/2+it { ((s + ()/2) -2 

Finally, consider 
J1.5?it 1 - s/p+i s- p 

(25) JY in| (S + O/ I Idu= In s +1 I pdu. 2it p p 
2i 

(The interchange of sum and integral is justified by uniform convergence.) By 
[8, Lemma 7, p. 307], if Re(a) > 0, a 0 0, then 

a 
(26) jlnIz/(z1+ )Idx > -1.48-Re(l/a). 

Hence, 

(27) ZJli In s l P da > -1.48E Re (1.5 +it-p) 

To simplify this, logarithmically differentiate (18), take real parts and use (20) 
again; this gives 

(28) E Re l- I ln(Q/ )+ 1 Re (F((s + 3)/2) +Re p(s ( X) 
s -p 

2 
((s + )/2) L(s, %) 

Taking s = 1.5 + it and using (28) in (27) yields 
(29) 

Z ln s du 
p 1/2+it S-+ l-p 

1 48 ( X ln + 2 Re (F'(( + if it))\ (L'(1.5 + it,%) >-l1.48y ln(Q/7r) +P( e 4~( +23 +t j Re L(.?tX 
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Using (23) once more, one finds that, since t > 50, 

(30) ' Re (F4(3 +2-+It) < I In(t/2) + .0011. 2 F(3 + 163+ it)J- 

Also for a = Re(s) > 1, 

(31) Re L(s X X) =Re ( pS l(p) J 

< - E ln(p)/(p, - 1) = 
p 

Now [8, p. 305] gives 

(32) -C'(1.5)/1(1.5) < 1.506. 

Thus, taking s = 1.5 + it in (31) and combining (17)-(32), one gets 
+0+it 

In JnL(s, X) Idu 
1/2+it 

> ln(Q/z) + [4 ln(t/2) - .0018] - 1.2183 
- 1.48[l ln(Q/z) + 4 ln(t/2) + .0011 + 1.506] 

> - .241In (Q ) - 3.4507. 

This is the desired lower bound in Theorem 3. El 

Note that the numbers in our lower bound are essentially the same as those 
in [8, Lemma 9, p. 309], while those in our upper bound are slightly worse than 
those in [8, Lemma 5, p. 307]; the reason is that our Lemma 4 is not as strong 
as [8, Lemma 4, p. 306]. 

4. CONCLUSIONS 

As a result of the computations described in the Introduction, and the dis- 
cussion in ??1-3, we have 

Theorem 4. For all Q < 13, the ERH holds for all primitive Dirichlet L- 
functions L(s, x) with modulus Q, for at least Itl < 10000. For all Q < 72, 
all composite Q < 112, and all Q E {116, 117, 120, 121, 124, 125, 128, 132, 
140, 143, 144, 156, 163, 168, 169, 180, 216, 243, 256, 360, 420, 432}, that is, 

for the classes of moduli listed in the introduction, the ERH holds for all primi- 
tive L(s, x) with modulus Q for at least Itl < 2500. More precise results for 
individual moduli are given in Table 5.1 (in the Supplement section). 

Disc files containing the following output are stored for each modulus and 
each L(s, x): the zeros of L(s, x) and the points between them where JL(s, x)I 
takes its maximum value, as well as Z(t, x) at the maximum; "V-points" 
between each pair of zeros, the function values Z(t, x) at the V-points, and 
error bounds for the values of those Z(t, x) . In addition, for each zero with 
Itl < 50, an additional V-point was recorded at a height 10-6 below the zero, 
to rigorously establish a lower bound for it. 
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Section 5 contains several tables and figures summarizing the data. We will 
now discuss these. In this section, T no longer denotes the coordinate on the 
Gram point scale, but is simply the usual height. 

Table 5.1 gives summary statistics about the L-series. For each modulus Q, 
the table reports the extrema which occurred over all L(s, x) with conductor 
Q. The columns of the table are: 

# L-SER: the number of primitive L-functions with conductor Q; 
ERH HEIGHT: the height T to which the ERH was proved for all L(s, x) 

with conductor Q; 
SUM 1/ RI BOUND: a rigorous upper bound for the sum 

E (E l/Ipl) 
primitive O<p<T 

(mod Q) L(p, X)=O 

(this bound was comp-uted by replacing each p by the next smaller V-point 
below it, and at the end was rounded up to 3 decimal places); 

LEAST ROOT: the smallest y > 0 for which some L(' + iy, x) = 0; 
LEAST I MAX I: the smallest maximum value of IZ (t, x) between zeros; 
GREATEST IMAX : the greatest maximum of IZ(t, x)I between zeros; 
GREATEST IS( T) I: the greatest value of IS( T, x) I found; 
LEAST GAP, GREATEST GAP: the least gap and greatest gap between con- 

secutive zeros (on the Gram point scale). 
Table 5.2 gives detailed information about the 15 "champions" for various 

statistics. For each record, the table gives the conductor Q, the identification 
number K for the L-series, the value of the statistic, and the location where it 
occurred. The statistics recorded are the LEAST and GREATEST gaps (on the 
Gram point scale); the LEAST CONSECUTIVE PAIRS of gaps; the LARGEST 
VALUES OF S( T, x) (reported with their sign), and the LEAST and GREAT- 
EST MAXIMA of IZ (t, x) . For all quantities except the GREATEST MAX, 
the values recorded are the extrema over all Q, K, with one possible report for 
each (Q, K). For the GREATEST MAX, the values recorded are the extrema 
for all Q, K, with one possible report for each Q. 

The most notable extremum is the very short gap of Gram length 0.001831 
between zeros at heights 257.54604 and 257.54738, with its corresponding small 
maximum of 0.000004, for the L-series with conductor Q = 95 and K = 8 
(the characterdeterminedby x(77) = e(3/4), x(21) = e(5/18); here andbelow 
we write e(w) for e27iw) . This point occurs at such a low height that the entire 
Riemann-Siegel formula is concentrated in the error term. Also notable is the 
short pair of consecutive gaps of total Gram length 0.212090 for Q = 121, 
K = 99 (x(112) = e(7/10), x(12) = e(1/11)) between roots at 1766.606, 
1766.627, and 1766.734. Four gaps of Gram length at least 3.0 were found, 
the longest being 3.1687, for Q = 163, K = 71 (x(2) = e(43/162)) between 
roots at 2376.696 and 2378.501. The largest value of S(t, x) encountered was 
-1.70084, at height 1513.695, for Q = 163, K = 105 (X(2) = e(145/162)). 
The largest value of IL(s, x)I found was 37.13567 at height 2182.831, for 
Q = 163, K = 74 (X(2) = e(131/162)). 

Even a cursory scan of the Table 5.1 suggests that the L-series with composite 
conductor are much more constrained than those with prime conductor. Figure 
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5.3 graphs the GREATEST I MAX j, GREATEST IS(T)I, LEAST GAP, and 
GREATEST GAP, to height 2500, for all L-series with conductor Q < 132 
dealt with in the study. These graphs show the range of values attained for a 
given Q, as well as the extrema. For the GREATEST I MAX I the dependence 
on the conductor is easiest to see. When the average GREATEST I MAX I is 
computed for each Q at heights 100, 500, 1000, 2500, and fitted to various 
curves, a good fit is given by 

y=0.7275.Q00472. (~(Q)) 0.9441* ( Q(~ )1.4557 y = 0.7275 * Q-0.0472 * 1(Q In 2 7t)) 

Note that (o(Q)/Q depends only on the primes dividing Q. 
Table 5.4 records most of the same statistics as Table 5.1, but for individ- 

ual L-series with conductor Q < 13. For each K, it gives the values, order, 
and sign of XK, followed by the sequence number K for the character XK. 
The columns for the character values first list generators for (Z/QZ)x and 
below them the values: thus, for Q = 3, the entries 2 and 1/2 mean that 
x(2) = e(1/2). The column "# ROOTS" gives the number of roots of L(s, XK) 
with 0 < y < ERH HEIGHT. Table 5.5 reports the root counts and root sum 
bounds at the intermediate heights 100, 500, 1000, 2500, 5000, 10000 for use 
in theorems of Rosser-Schoenfeld type. 

Following the tables are several figures concerning the pair correlation con- 
jecture and the GUE hypothesis. 

Montgomery originally stated the pair correlation conjecture only for the 
Riemann zeta-function [15]. However, assuming the ERH, one expects it to 
hold for Dirichlet L-series as well. Given a primitive L(s, x), let E(t, X) = 
(1 /7r) 0(t, x) be the coordinate on the Gram point scale, as in ? 3. List the zeros 
2 + iyn of L(s, x) by increasing ordinates, starting at any fixed zero. The 
conjecture predicts that for 0 < Al < A2 one should have 

lim N-1 * #{(n, k) 1< n < N, E(yn+k, X) - E(yn, x) E (A1, A2]} 
N-+oo 

- 

2 
1( sin2 (n dx 

(7tX)2 ) 

By tallying the counts on the left side, one can determine an "empirical pair cor- 
relation function". For the Riemann zeta function, Odlyzko [ 16] found excellent 
agreement between the empirical and theoretical pair correlation functions. 

The GUE hypothesis, a much more far-reaching and speculative conjecture, 
says (loosely) that the zeros of L(s, x) should behave statistically like eigenval- 
ues of random Hermitian matrices chosen from the "Gaussian Unitary Ensem- 
ble" of mathematical physics. We will not explain the GUE hypothesis here, but 
refer the reader to [16] and the references therein. The GUE hypothesis implies 
the pair correlation conjecture, and makes many other predictions about the 
statistical properties of the zeros. Among these are the expected distribution 
functions for the gaps between k consecutive zeros (k = 1, 2, ...), and the 
assertion that the fractional parts (E(yn, x)) = E(yn, x) (mod 1) should be 
uniformly distributed in the unit interval. A major goal of Odlyzko's work [16] 
was to numerically test the GUE hypothesis for the Riemann zeta function, and 
again he found excellent agreement. 



436 ROBERT RUMELY 

The present study sought to examine these conjectures for L-series. To im- 
prove statistics, since only a few thousand zeros have been computed for each 
L(s, x), the program averaged the empirical pair correlation functions for all 
L(s, X) with a given conductor Q. For prime moduli, especially for large 
primes, the result was near Montgomery's pair correlation function. However, 
for composite moduli, especially for moduli divisible by 12, the empirical pair 
correlation functions showed large oscillations. The functions varied from mod- 
ulus to modulus, but for moduli with the same underlying prime factors they 
were almost identical. 

In addition, density plots were computed for the roots (mod 1) on the Gram 
point scale (that is, density plots for the fractional parts (E(yn , X))) . In all cases 
they were roughly sinusoidal in form, with a peak at x = I . However, they 
were fairly flat for prime moduli, more peaked for composite moduli, and quite 
peaked for moduli divisible by 12, 60, and 420. 

Figure 5.6 shows these results. The plots actually presented are the averages 
over all L-series whose conductor had a given set of primes as its support, but 
the plots for individual moduli, and even individual L-series, are very similar. 
For each set of underlying primes, the figure on the left is the distribution of 
the roots (mod 1), and the figure on the right is the empirical pair correla- 
tion function. Plots are shown for moduli with supports {2}, {3}, {5}, {7}, 
{primes}, {2, 3}, {2, 5}, {3, 5}, {2, 3, 5}, {2, 3, 5, 7}. In addition, the 
GUE prediction and the empirical pair correlation function of C(s) (using zeros 
to height 10000) are given for comparison. 

Figure 5.7 shows the pair correlation functions of individual L-series with 
Q = 9 and 13, to compare with the average pair correlation functions of those 
moduli (they are only a few of many that were plotted). These figures help 
justify our assertion that, apart from statistical scatter, all the L-functions with 
a given conductor Q have the same pair correlation function. 

Odlyzko has suggested an explanation for these phenomena. By the Riemann- 
Siegel formula for Dirichlet L-series (see [23, Theorem 6]), 

L 

Z(t, x) = 2 n-1/2 . cos(O(t , X) + arg(Z(n)) - t * ln(n)) + 0(t- 14), 
n=1 

(n,Q)=I 

where L = QLlt/(27rQ)J . Until t is fairly large, the terms with small n 
may be expected to dominate, and the n = 1 term, cos((O(t, x))), will be 
the most important. If Q is divisible by small primes, then the terms where 
n is divisible by those primes will be missing from the sum, and the n = 1 
term will dominate even longer. This suggests that for highly composite Q, the 
zeros will (at least initially) be much more regularly spaced than for prime Q, 
and that on the Gram point scale (mod 1) the roots should cluster about 2. 
This is precisely what is observed in Figure 5.6. Furthermore, if the density 
function for the roots (mod 1) is 1 - w *cos(27x), then (assuming the roots 
are randomly distributed (mod 1) subject to this density distribution), the pair 
correlation function would be 1 + Iw2 * cos(27rx). In fact, the roots are not 
randomly distributed; neighboring roots tend to "repel" each other. However, 
for sufficiently long intervals the randomness assumption is more nearly valid. 
Thus, given a strongly peaked density function, one would expect that for large 
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x the pair correlation function should have regular oscillations. This is exactly 
what is seen in Figure 5.8. Finally, if the arguments in the cosine terms in the 
Riemann-Siegel formula are more or less "randomly" distributed (mod 27r), 
then one should see the same empirical pair correlation function (to a given 
height) for all L-series with the same conductor, as observed in Figure 5.6. 

For large t, the dominance of the small terms in the Riemann-Siegel for- 
mula should diminish. One would expect the roots to become more uniformly 
distributed (mod 1), and the empirical pair correlation functions to converge 
to Montgomery's pair correlation function. However, the convergence is likely 
to be slower than it is for the Riemann zeta function. 

Figure 5.8 shows extended graphs of the pair correlation functions for Q = 13 
and Q = 180. It can be seen that for the prime modulus Q = 13, the function 
is fairly flat but has a long-term pattern of low-amplitude "beats", while for 
the highly composite modulus Q = 180 there are regular oscillations of large 
amplitude, superimposed on a pattern of beats. These graphs are typical of 
many that were plotted. Figure 5.8 also shows modified Fourier transforms of 
these pair correlation functions. More precisely, the function plotted in the 
lower graph is FQ(a, t) = 1 - (1 - fQ(x))^, where fQ(x) is the pair correlation 

function, and h-(a) = f60 h(x) cos(27rxa) dx. Here, t = 10000 for Q = 13, 
and t=2500 for Q= 180. Ifwedefine 

Fx(a, t) = 2 7r 
ta(- 

t ln(Qt/27r) 1t I + (y - Y )2 

O<y' <t 

where 2 + iy, 2 + iy', run over zeros of L(s, x), then FQ(a, t) is basically the 
average of the Fx(a, t) for all x with conductor Q, omitting the terms with 
y = y'. Both F13(a, t) and F180(a, t) have spikes just to the right of a = 1, 
corresponding to the periodic oscillations of the pair correlation functions. For 
the trivial character Xo, Montgomery [15] showed that 

Fxo(a, t) = (1 + o(1))t-2a ln(t) + a + o(1) as t oo 

uniformly for a E [0, 1]. For a > 1, he conjectured that as t oc, 
Fx0(a, t) = 1 + o(1), uniformly for a E [a, b] with 1 < a < b < oc. (This is 
essentially equivalent to the pair correlation conjecture.) One expects the same 
results to hold for the F.(a, t) with X :# Xo. Figure 5.8 supports this, though 
it raises the possibility that the convergence may not be uniform near a = 1. 
However, Ozluk [17] has studied functions similar to the F,(a, t) which are 
averages over all Q and all x, and obtained some uniform convergence results 
for them. 

Figure 5.9 examines the distribution of gaps (on a Gram point scale) between 
nearest and second-nearest neighbor zeros, in the light of GUE predictions. For 
each, plots of the distribution are drawn and the kth-power moments of the dis- 
tribution about its mean (1 or 2 respectively) are given. For the nearest neighbor 
distributions, log(T), 1 / T and 1 / T2 moments are given as well. (These are 
the same moments examined by Odlyzko for ;(s).) The gap distributions are 
studied for L-series in three categories: those with moduli divisible by 12, all 
moduli, and prime moduli. (In each case, the data presented are the averages 
over all L-series in the category.) In addition, the GUE predictions, kindly 
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supplied by Odlyzko, are shown. It can be seen that in all cases the empirical 
distributions are more sharply peaked than the GUE predictions, with the prime 
moduli coming closest to the GUE. Since the heights in this study are so low 
(< 10000), it is surprising that the distributions approach the GUE predictions 
as well as they do. With increasing t one would hope for even better agreement. 

Finally, it is generally believed that the zeros of distinct L(s, x) should 
be statistically independent. Figures 5.10 and 5.11 examine this hypothesis for 
pairs of L-series and for multiple sets of L-series. Because it is easy to work out 
the GUE prediction for the distribution of gaps between consecutive zeros, the 
plots focus on that statistic. Let WI (x) be the GUE (Gram-scale) distribution 
for gaps between consecutive zeros of one L-series (shown at the bottom left 
of Figure 5.9). Let XI, ..., X be distinct, and put L,(s) = H7=1 L(s, xe). Let 
the Gram scale for L(s, Xi) be E(t, Xi), and define the Gram scale for L,(s) 
to be 

n 

En(t) = EE(t, Xi). 
i=1 

Assuming (a) the ERH, (b) that the Gram scale gaps between consecutive zeros 
of each L(s, Xi) have the distribution function WI (x), and (c) that the zeros 
of the L(s, Xi) are statistically independent, then the Gram scale gaps between 
consecutive zeros of Ln (s) will (asymptotically) have the distribution Wn (x) = 
$1 x), where 

0 ro n-1I 
(x) = WI (x) (u - x) WI (u) du) 

roo 2 00 n-2 
+ (n - ).j WI (u) d u) (u - x) WI (u) du) 

Hejhal gives the case n = 2 of this formula in [5, p. 1374]; however, he replaces 
the Gram scale coordinate E2(t) by 2 E2(t). 

Figure 5.10 considers pairs of L-series. The first graph shows the average, 
over all Q < 19, and all pairs XI :# X2 having the same conductor Q, of the 
empirical gap distributions for L(s, Xi )L(s, X2). It is in excellent agreement 
with the GUE prediction. The distributions for a number of individual products 
L(s, Xi )L(s, X2) are also shown (a few of many that were plotted). For the 
most part they are in good agreement with the GUE prediction: even for the 
Dedekind zeta function of Q(-=420) the agreement is quite good, which is 
surprising, since to height 2500 there are only 1985 zeros of ;(s), as opposed 
to 4387 zeros of the quadratic L- function L(s, X420) . 

The only obvious deviations from the GUE prediction occur for products 
L(s, XI)L(s, X2) where both XI and X2 have the same conductor Q, and Q 
is divisible by 12. However, these can be explained in terms of the very nonuni- 
form distribution of the roots (mod 1) for such L-series (see Figure 5.6), to- 
gether with phase offsets between the Gram scales E(t, XI) and E(t, X2). One 
has 

E(t, Xi) =2 ln (Q)-(-1)"* ig() 2 +0(1/ t), 

where Ji and H., are as in the functional equation of L(s, x,) . It follows that 
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E(t, XI) and E(t, X2) have an almost constant phase offset 

A = [(-I)' - (-I 1 )2] sign(t) + (27z) 1(Ox, - HX2) + 0(l/1t ) 
8 

If A is near 0, then since the zeros of each L(s, Xi) cluster near 2 (mod 1) on 
their respective Gram point scales, the joint gap distribution for L(s, XI )L(s, X2) 
should be skewed towards small gaps. On the other hand, if A is near 0.5, then 
the joint gap distribution should be skewed towards gaps of length 1. Exactly 
this behavior is seen for Q = 60, as shown in Figure 5.10. There are three 
primitive characters with conductor 60: XI and X2 are conjugate complex 
characters of order 4, and X3 is the quadratic character. The phase offsets be- 
tween the three pairs of Gram scales are 0.3238, 0.0881, and 0.4119; both 
in the joint gap distributions, and in the joint pair correlation functions, the 
expected skewing appears. 

Figure 5.1 1 considers the joint gap distributions for three or more L-series. 
In general, there is good agreement between experiment and theory, though in 
some cases there may be a slight deficiency of very small gaps. The examples 
shown were chosen to include cases where one might look for correlation, if it 
were to appear: for example, the four characters of order 10 for Q = 11 are 
Galois-conjugate, and the product of the corresponding L(s, Xi) is the Artin 
L-series of a Q-irreducible representation of Gal(Q/Q). It should be noted 
that as the number of L-series increases, the strength of the GUE prediction 
becomes weaker and weaker: Mehta and des Cloizeaux [14] have shown that 
as n oc, under rather mild conditions on a distribution W(x) (chiefly that 
W(0) = 0), the n-fold joint distribution based on W(x) approaches y = e-x. 
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